Electrochemistry for materials technology

Chapter 3
Electrode kinetics

A. Charge transfer limitation

(Butler-Volmer equation)

Recap of cell potentials definition

$$E_{cell} = E^{\circ}_{cell,T} - \frac{RT}{zF} \ln Q$$

Standard cell potential: the theoretical Nernst ΔV for a redox reaction, when the activities of all the reactants and products are one (= standard).

Equilibrium potential: ΔV of the cell taking into account the activities according to the Nernst equation.

'Activities': - concentrations for solutions (e.g. Fe³⁺, Cu²⁺,...)

- partial pressures for gases (e.g. H_2 , O_2 ,...)

Open circuit voltage (OCV):

- = Experimental measurement of maximum ΔV at current density j=0 (in principle equal to theoretical ΔV calculated from ΔG , but usually less).
- Useful for characterizing device performance. (Significant deviation from theoretical ΔV is indicative of side reactions, f.ex. PEMFC)
- ΔV decreases as current flows through the system (due to ohmic (= R.I) and non-ohmic losses (= charge transfer + mass transfer).

Current I or j

Electric current (i or j) is the flow of electric charge (C/s). This charge is carried by *electrons* in a wire or by *ions* in an **electrolyte**.

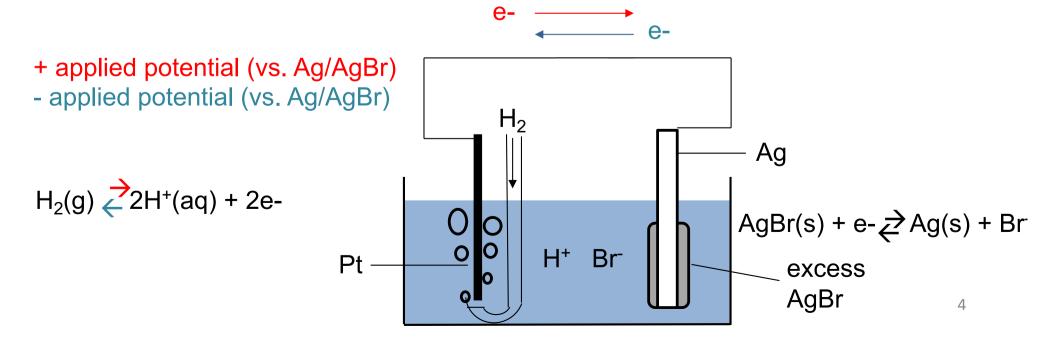
i: current (in Amperes (A), or Coulomb/s (C/s))

j: current density units of A/surface area (cm² or m²)

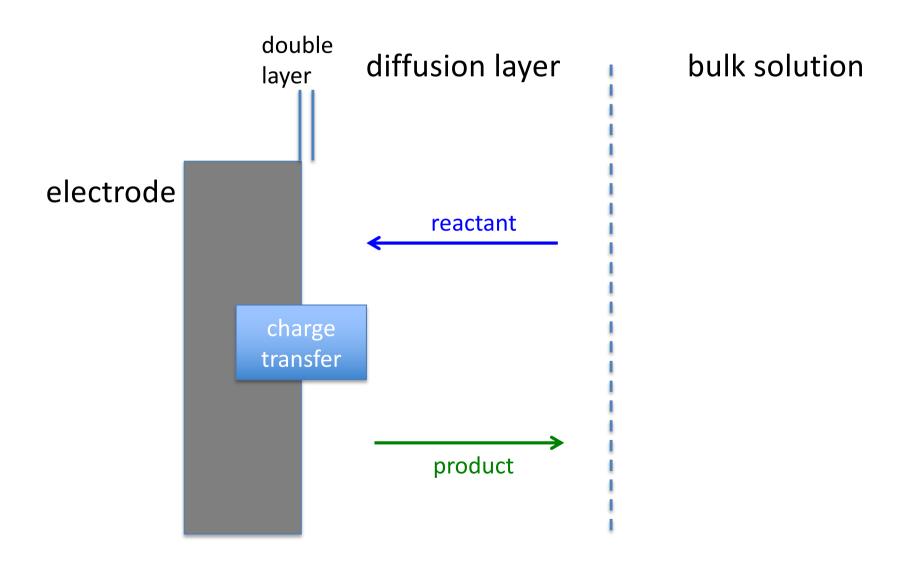
Voltage (E_{cell}) is an **intensive variable** (independent of the amount reacted). Current (j or i) is an **extensive** variable (depends on the **amount**. F = charge **per mol**).

Sign convention for current

- Electrons (e⁻), in the external circuit, always flow from anode (oxidation) to cathode (reduction).
- Current always flows from cathode to anode (opposite to e-).
- The only difference occurs, in a current vs. voltage plot of a working electrode (WE) vs. a reference electrode (RE), when applying a positive potential to the WE to drive an oxidation (anodic reaction), or a negative potential to drive a reduction (cathodic reaction), if the resulting current is considered positive or negative in sign in a plot.

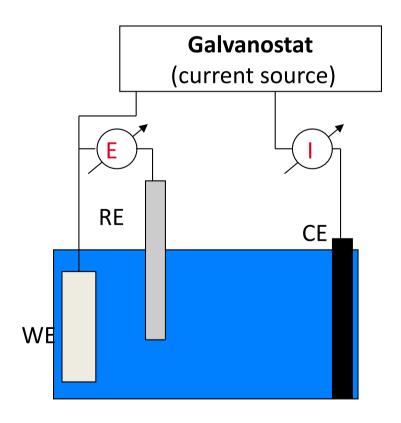


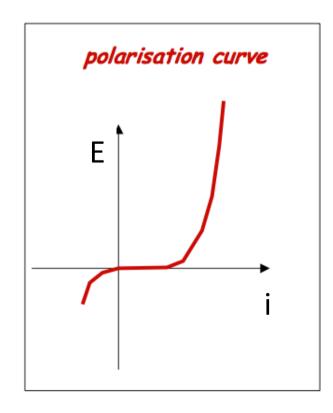
Rate determining steps (rds) in electrochemical reactions



Methods for measurement of polarisation curves (j-V curves)

GALVANOSTAT: current source that forces a selected current I to pass from the working electrode WE (i.e. the electrode under investigation) to the counter electrode CE. The resulting potential E is measured using a reference electrode RE.



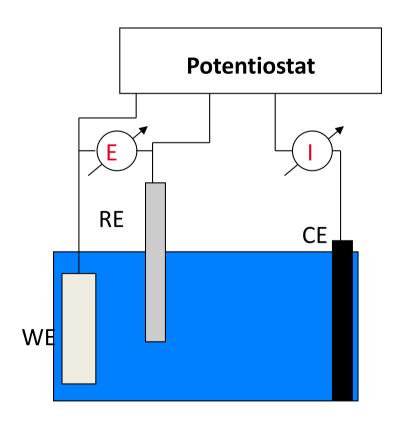


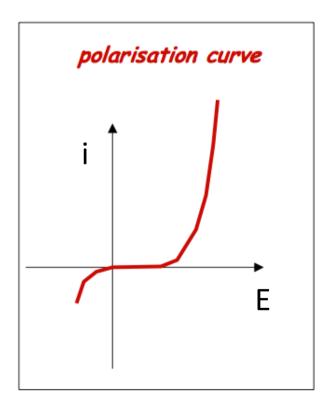
Methods for measurement of polarisation curves (j-V curves)

POTENTIOSTAT: electronic device that maintains a selected potential E between

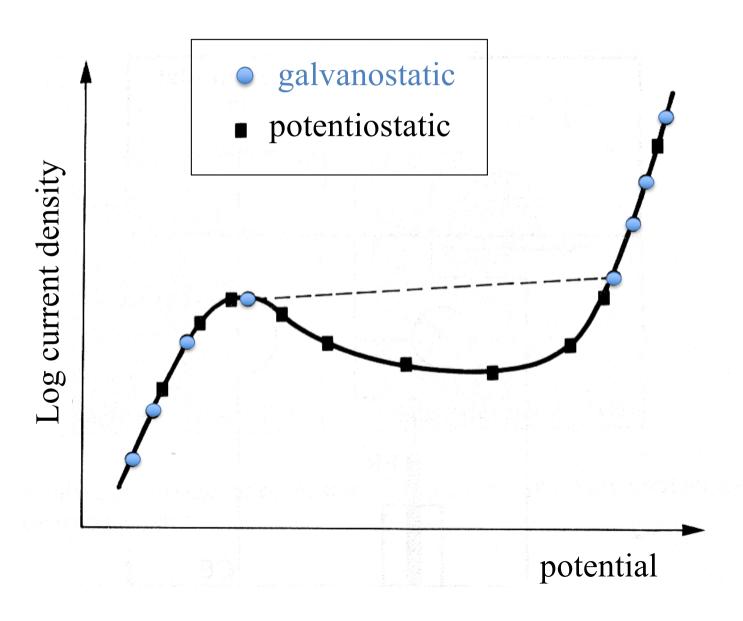
RE and WE by passing an appropriate current I between WE and CE.

RE: reference electrode, CE: counter electrode, WE: working electrode





Galvanostatic and potentiostatic polarisation (j-V) curves

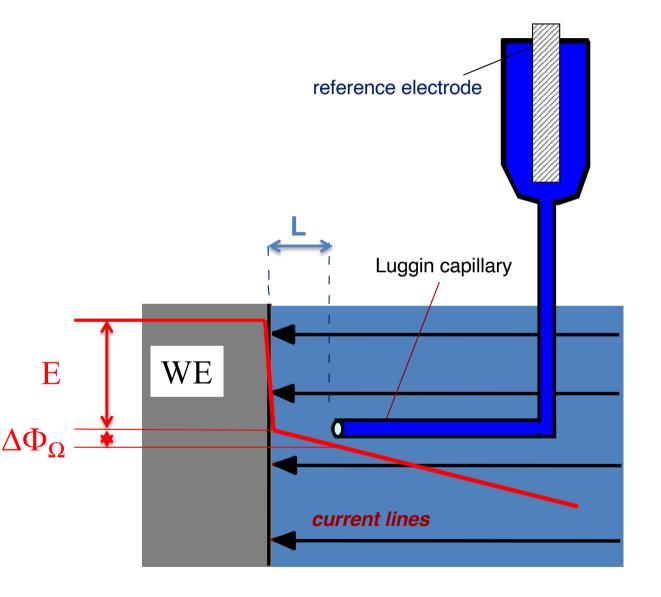


Reference electrode with Luggin capillary

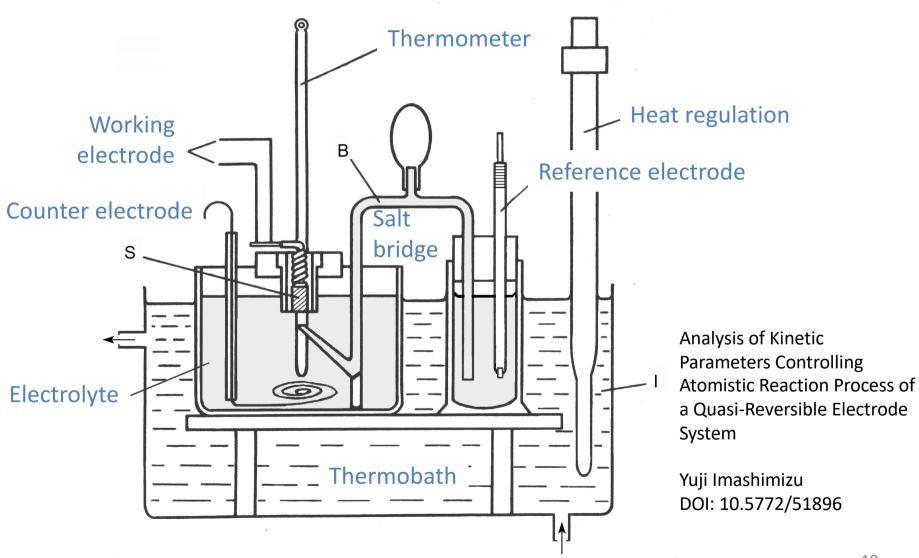
$$\mathbf{E}_{\text{measured}} = \mathbf{E} + \Delta \mathbf{\Phi}_{\mathbf{\Omega}}$$

$$\Delta\Phi_{\Omega} = i L / \kappa$$

 κ = electrolyte conductivity



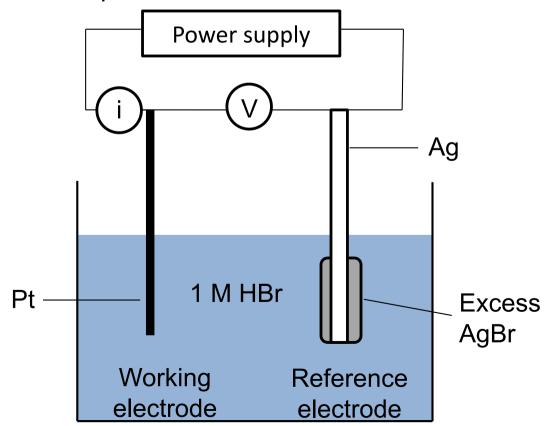
Schematic diagram of an electrolytic cell for polarisation experiments



Consider an electrochemical experiment where a WE (Pt) and RE (AgBr) are immersed in a solution, and the potential difference between the 2 electrodes is varied by means of an external power supply

Working electrode (WE): electrode where the reaction of interest occurs

Reference electrode (RE): electrode made up of phases having essentially constant compositions → its potential is fixed



1. Apply more **positive potentials** to the Pt electrode relative to the Ag/AgBr electrode => **oxidation** reaction

$$2 Br(aq) \rightarrow Br_2(g) + 2 e - E_{reduction} = +1.02 V vs Ag/AgBr$$

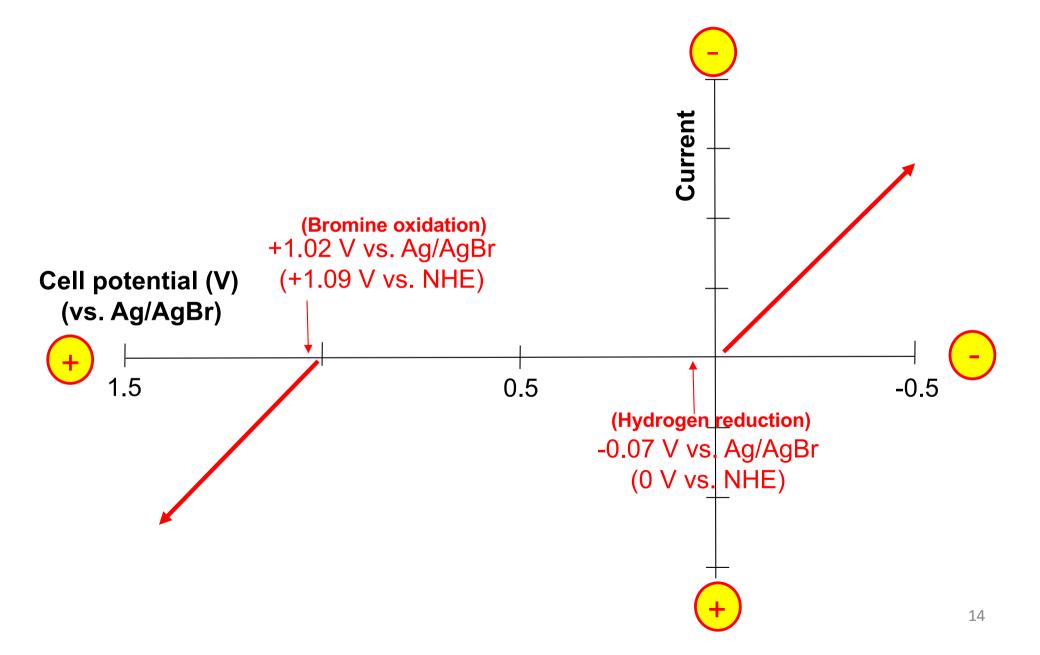
- The flow of electrons is from the solution (Br anions at the Pt surface) into the electrode = oxidation (anodic current)
- While this happens, AgBr(s) at the Ag/AgBr electrode is reduced to Ag⁰, and Br⁻ is liberated into the solution. As [Br-] remains constant near the electrode at modest currents, the potential of the Ag/AgBr electrode remains ≈ the same as at open circuit.

2. Apply more **negative potentials** to the Pt electrode relative to the Ag/AgBr electrode => **reduction** reaction

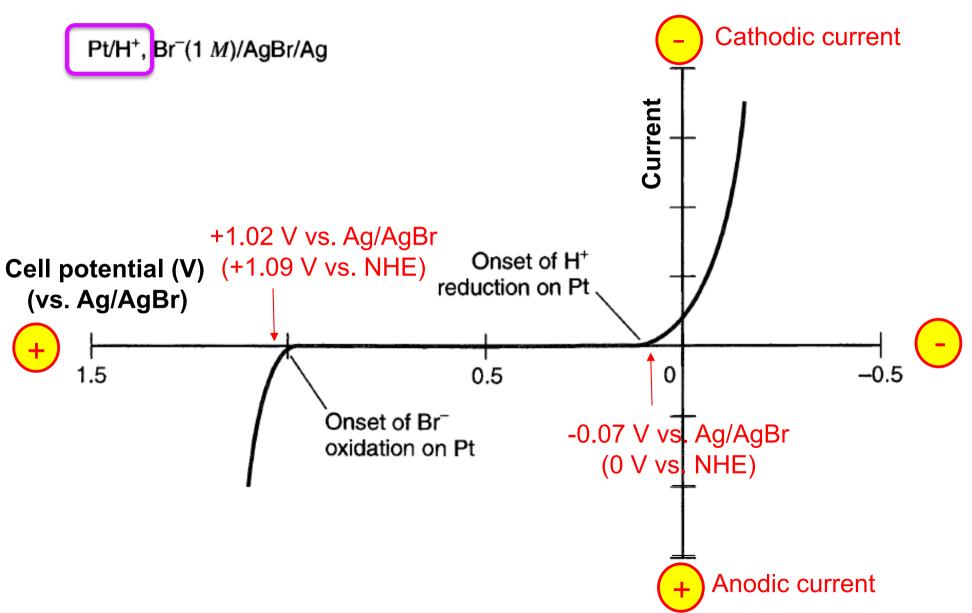
$$2 H^{+}(aq) + 2 e^{-} \rightarrow H_{2}(g)$$
 $E_{reduction} = -0.07 V vs Ag/AgBr$

- The flow of electrons is from the electrode into the solution
 (H⁺ at the Pt surface) = reduction (cathodic current)
- While this happens, Ag(s) is **oxidized** in the presence of Br to form AgBr at the Ag/AgBr electrode. As [Br-] remains constant near the electrode at modest currents, the potential of the Ag/AgBr electrode remains ≈ the same as at open circuit.

Current-voltage (j-V) plot : expected trend



Current-voltage (j-V) plot : observed



Effect of electrode material on j-V plot

Same system, but different working electrode WE (Pt replaced by Hg)

Reference electrode is in equilibrium

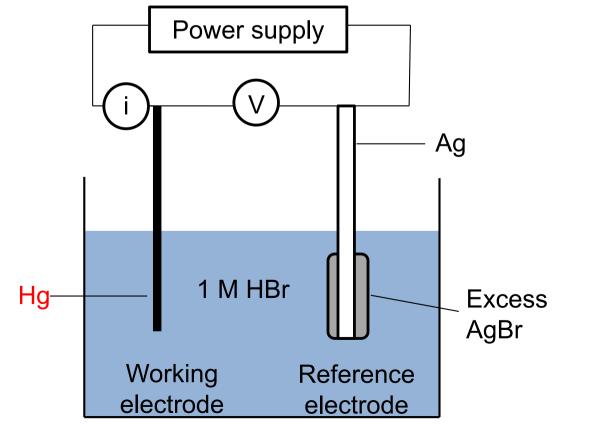
AgBr(s) + e- ∠ Ag(s) + Br⁻

[Br-] is known → calculated potential from Nernst equation

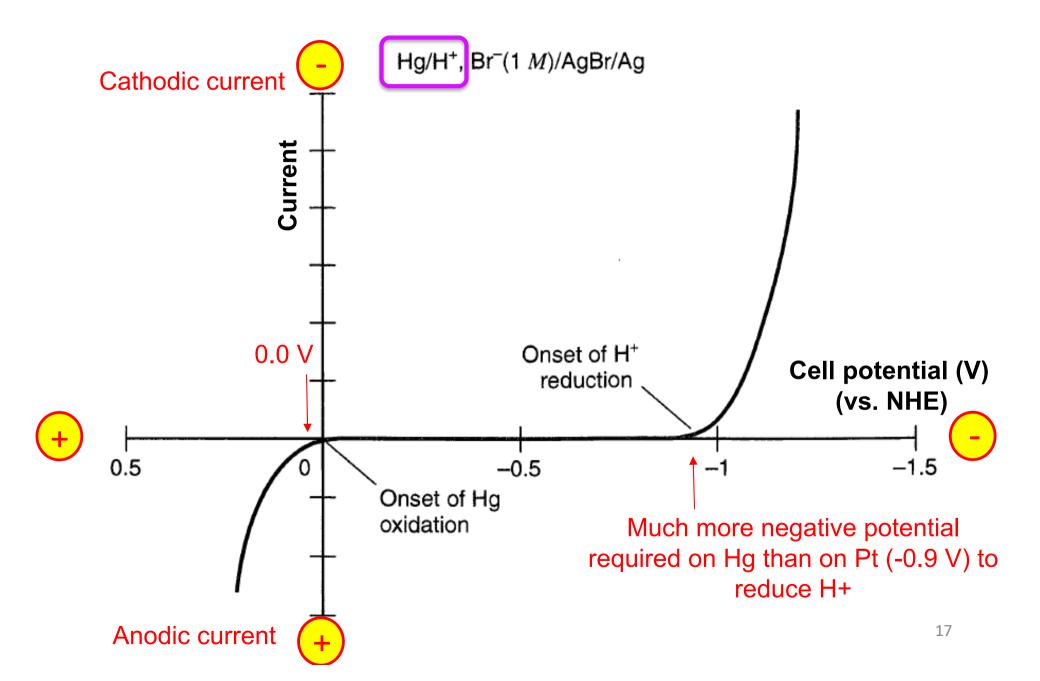
Working electrode is not in equilibrium

There is no redox couple (H₂/H⁺ nor O₂/H₂O) present (H₂ or O₂ missing)

16



Effect of electrode material on j-V plot



Effect of electrode material on j-V plots

The thermodynamics of the system stay the same

Apply a **negative** potential to the Hg electrode relative to the Ag/AgBr electrode, => **reduction** reaction :

$$2H^{+}(aq) + 2e - \rightarrow H_{2}(g)$$

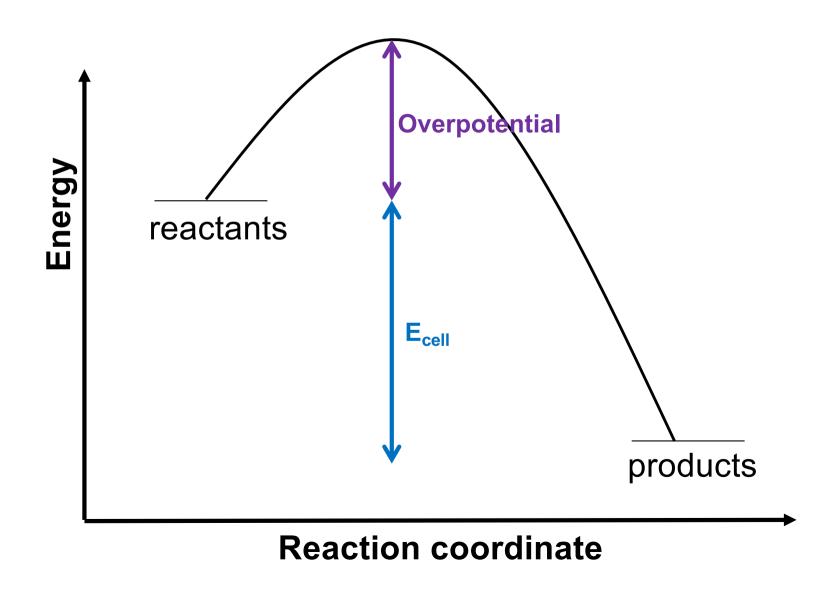
The equilibrium potential of this half reaction is independent of the electrode material.

In the case of Hg, however, a much more negative potential (higher electron energy) is needed to observe the first small (measurable) current flow.

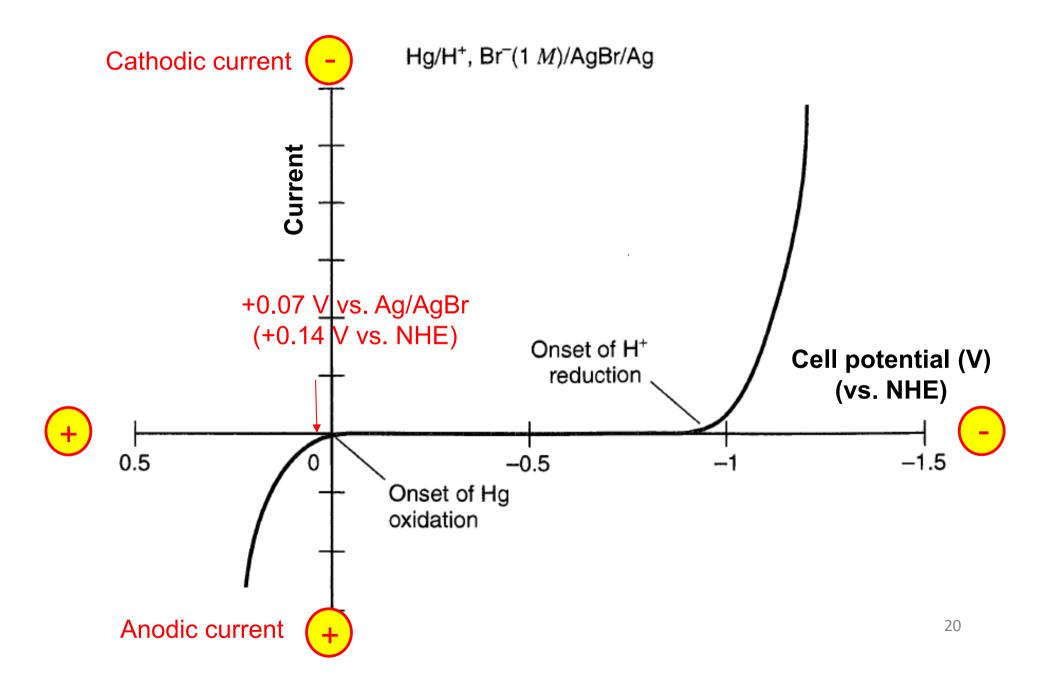
The additional potential (beyond the thermodynamic requirement) needed to drive a reaction at a certain rate is called the **overpotential**.

=> mercury (Hg) shows a very high overpotential for the hydrogen evolution reaction

Analogy between chemical reactivity and electrochemistry



Effect of electrode material on j-V plot



Effect of electrode material on j-V plot

Same system, but different working electrode (Pt replaced by Hg)

Apply a **positive** potential to the Hg electrode relative to the Ag/AgBr electrode => **oxidation** reaction

$$2 \text{ Hg} + 2 \text{ Br}(\text{aq}) \rightarrow \text{Hg}_2 \text{Br}_2 + 2 \text{ e}$$

This reaction proceeds at a much lower potential (+0.14 V vs NHE) than the Broxidation reaction (+1.07 V vs. NHE).

Observation:

the onset potential (E_{onset}) at which measurable oxidation (or reduction) current flow occurs depends both

- (a) on the electrode material (e.g. overpotential of Hg vs Pt electrode for hydrogen evolution) and
- (b) on the solution employed (e.g. Br ion redox reaction with Hg vs Pt).

Same system, but additional electrolyte (ions) added

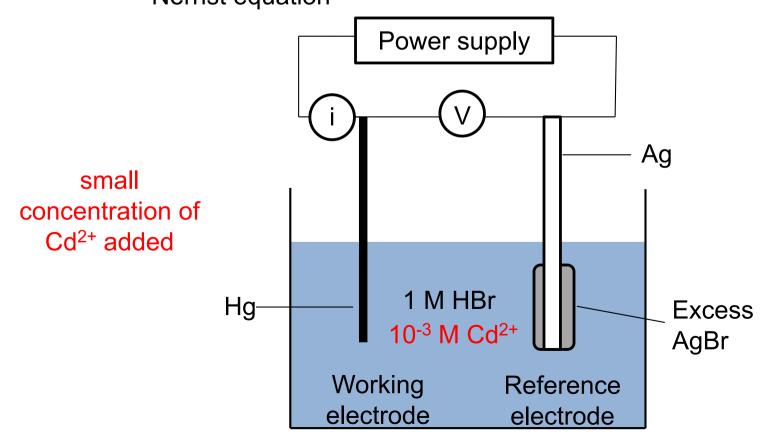
Reference electrode is in equilibrium

AgBr(s) + e- Ag(s) + Br
Br Lis known A calculated potential from

[Br-] is known → calculated potential from Nernst equation

Working electrode is not in equilibrium

There is no redox couple $(H_2/H^+ \text{ nor } O_2/H_2O)$ present



Apply a very **negative** potential to the Hg electrode relative to the Ag/AgBr electrode => **reduction** reaction

$$2 H^{+}(aq) + 2 e^{-} \rightarrow H_{2}(g)$$
 $E_{onset} < -0.8 \text{ V vs. NHE}$

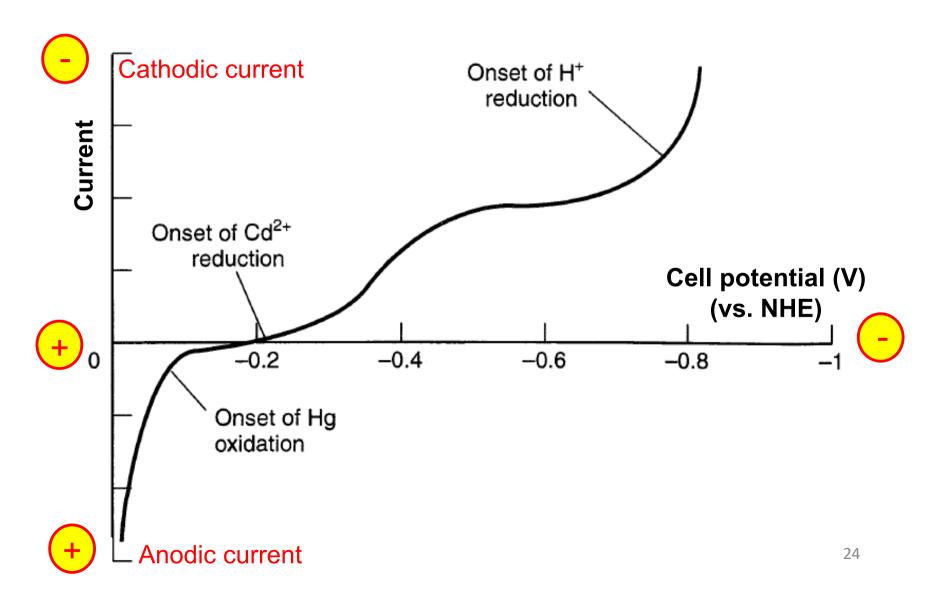
Apply a very **positive** potential to the Hg electrode relative to the Ag/AgBr electrode => **oxidation** reaction

$$2 \text{ Hg} + 2 \text{ Br}(\text{aq}) \rightarrow \text{Hg}_2 \text{Br}_2 + 2 \text{ e-} \text{E}_{\text{onset}} > -0.1 \text{ V vs. NHE}$$

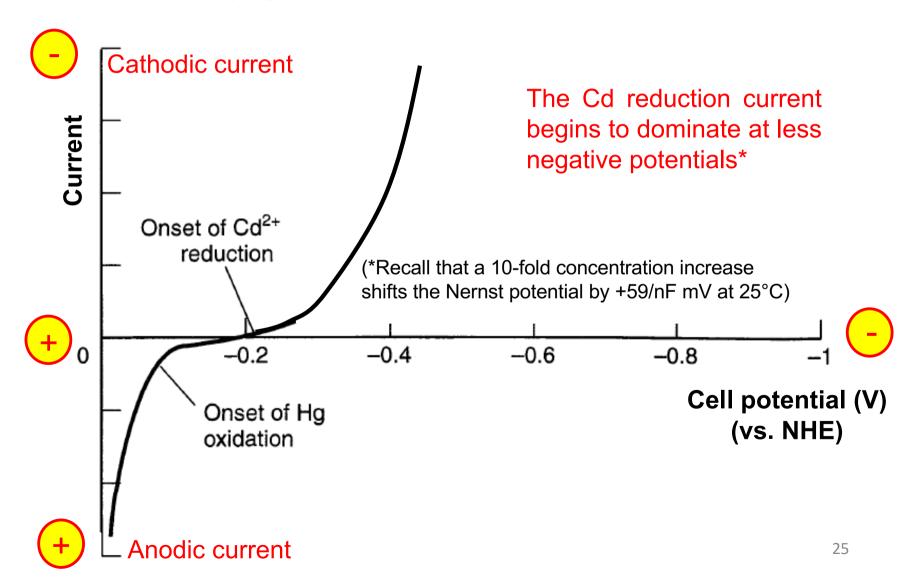
At *intermediate* negative potentials applied to the Hg electrode relative to the Ag/AgBr electrode => intermediate, additional, reduction reaction

Hg
$$CdBr_4^{2-} + 2e^- \rightarrow Cd (Hg) + 4 Br^- E_{onset} \sim -0.4 V vs. NHE$$

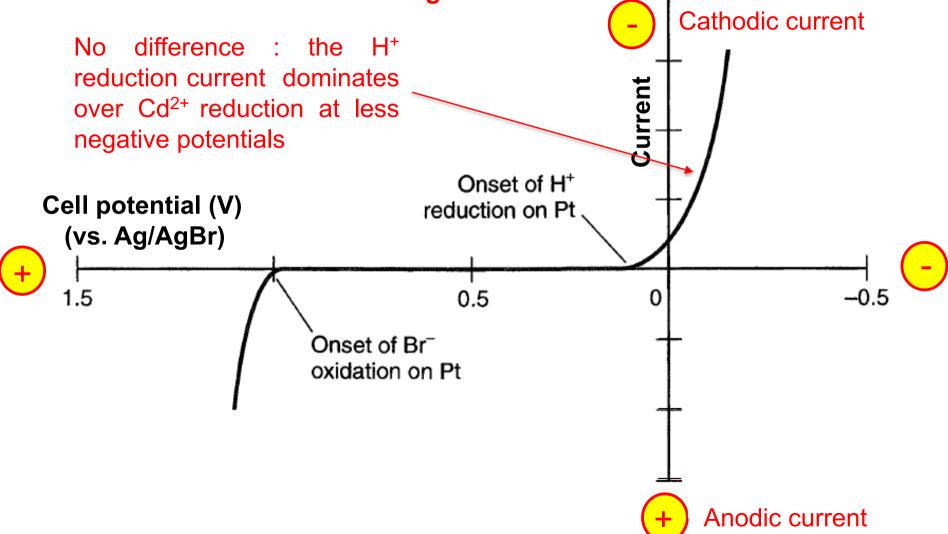
 Hg/H^+ , $Br^-(1 M)$, $Cd^{2+}(1mM)/AgBr/Ag$



When adding higher concentration of Cd²⁺ to the solution:



When adding Cd²⁺ to the solution with the Pt electrode instead of the Hg electrode:



General rules for j-V plots

In the absence of high overpotentials, in general:

• When an electrode is moved from its open-circuit value towards more **negative** potentials (negative currents), the substance **reduced** first (=easiest to reduce = to pick up e-) has the least negative (or more positive) E°.

Example: H⁺ reduction before Cd²⁺ reduction on a Pt electrode system

When an electrode is moved from its open-circuit value towards more positive
potentials (positive currents), the substance oxidized first (=easiest to oxidize = to
loose e-) has the least positive (or more negative) E°.

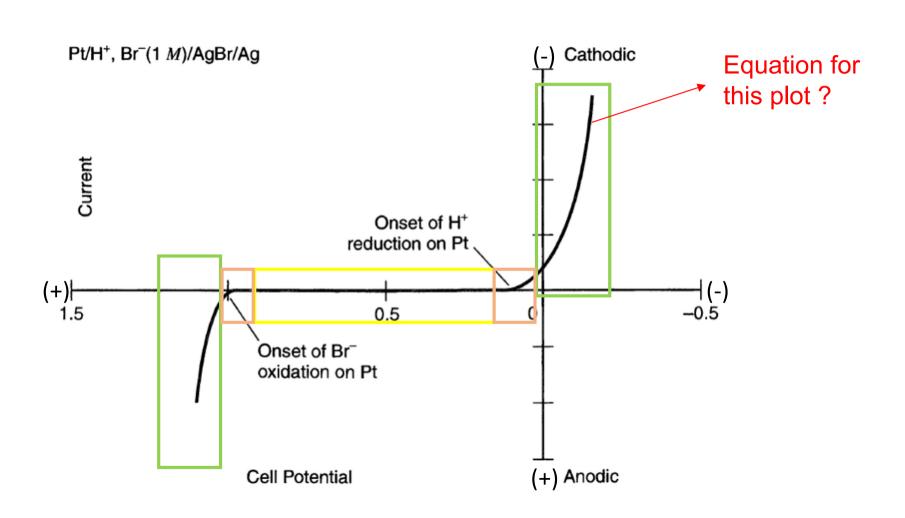
Example: Hg oxidation before Br- oxidation on a Hg electrode system

(small) quantities of an added substance may contribute an additional peak.
 Example: small concentrations of Cd²⁺ added to Hg electrode system

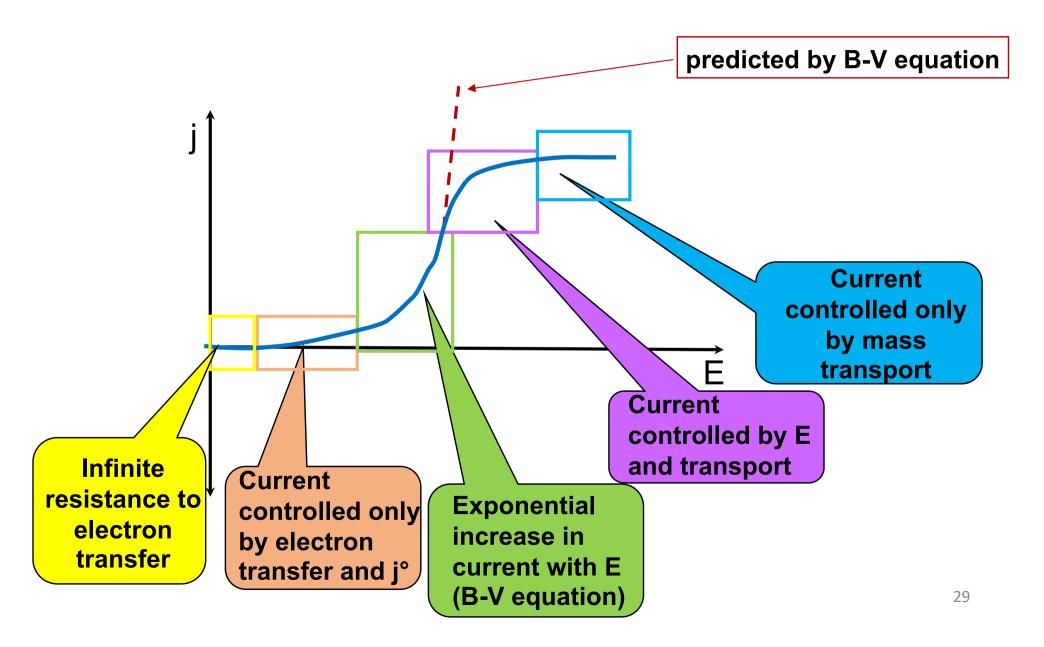
These predictions are based on thermodynamic considerations, and slow kinetics (e.g. large overpotentials) might prevent a reaction from occurring at a significant rate in a region where the E° would suggest the reaction to be possible.

Example: H⁺ reduction on Hg vs. Pt electrode

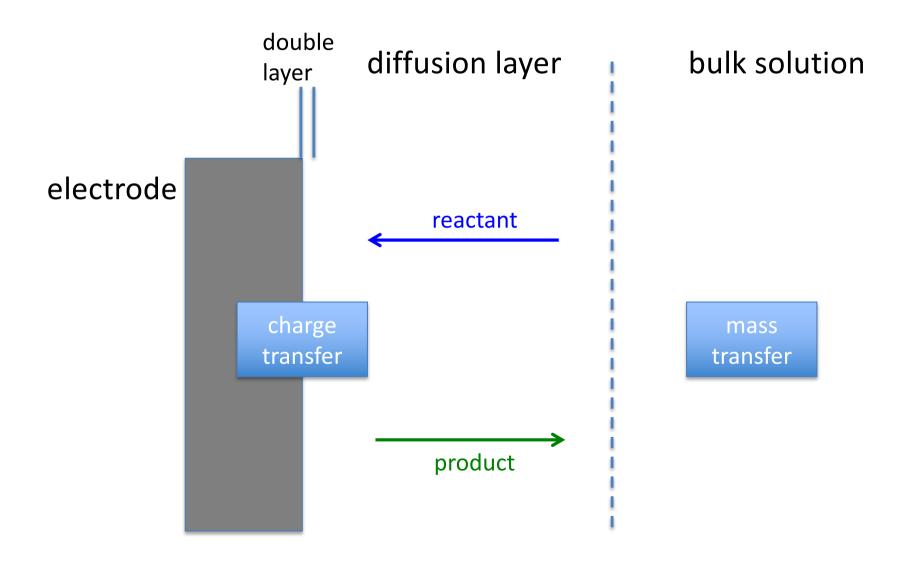
Deriving an analytical expression for observed j-V plot



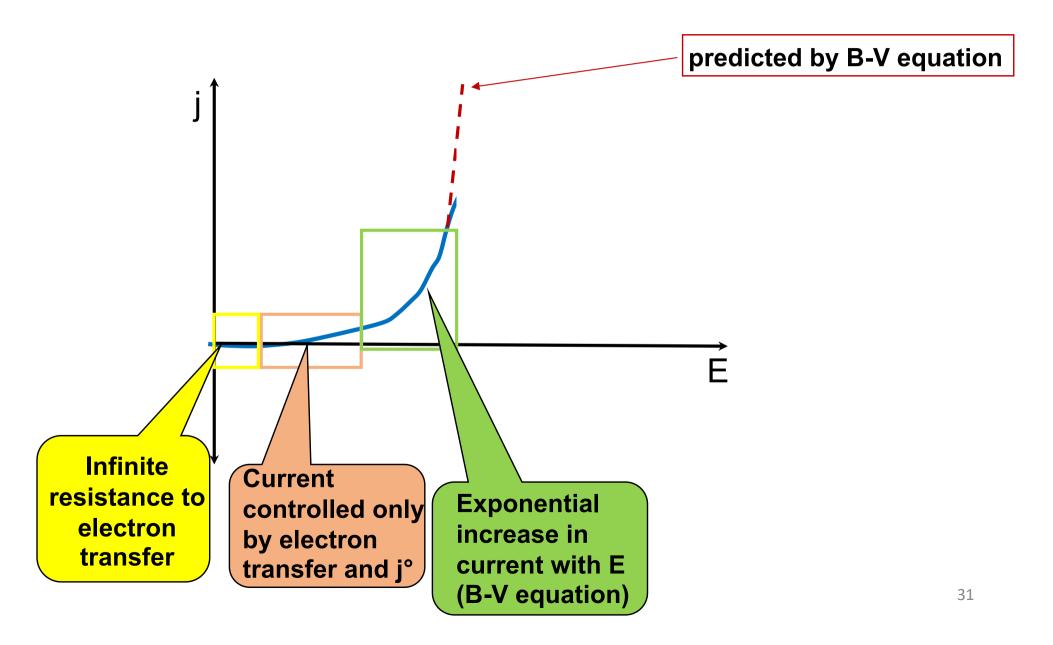
Deriving an analytical expression for observed j-V plot



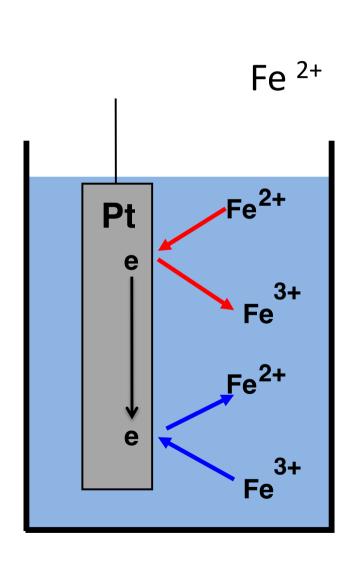
Rate determining steps in electrochemical reactions

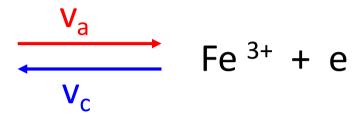


Deriving an analytical expression for observed j-V plot



General equation for charge transfer reaction: Butler-Volmer





 V_a : anodic reaction rate V_c : cathodic reaction rate

Hypotheses:

- **first order** kinetics (v ∞ concentration)
- Arrhenius law

$$v_a = k_a c_{Fe 2+,s} exp (-\Delta G_a^{\#}/RT)$$

$$v_b = k_b c_{Fe 3+,s} exp (-\Delta G_c^{\#}/RT)$$

Apply a bias relative to a reference electrode => current flow

$$R \xrightarrow{k_f} O + ze-$$

Recall:

 $E_{red} > 0$: reduction favored

 $E_{red} < 0$: oxidation favored

O: oxidized species in the electrolyte

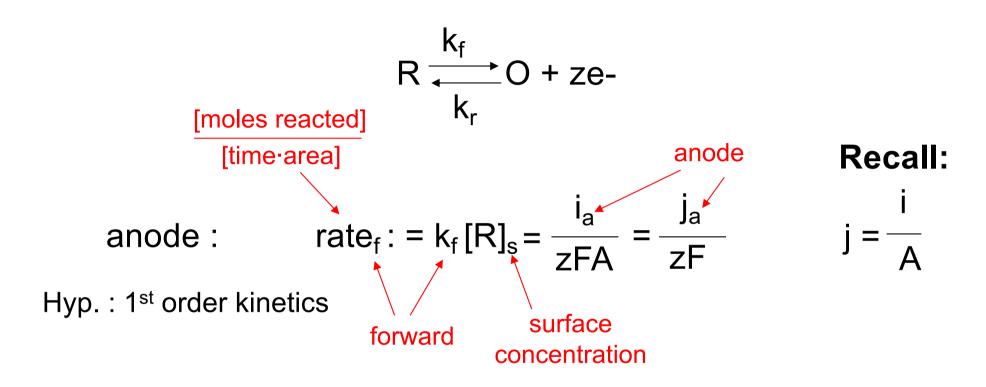
R: reduced species in the electrolyte

e-: electrons being transferred to/from the working electrode

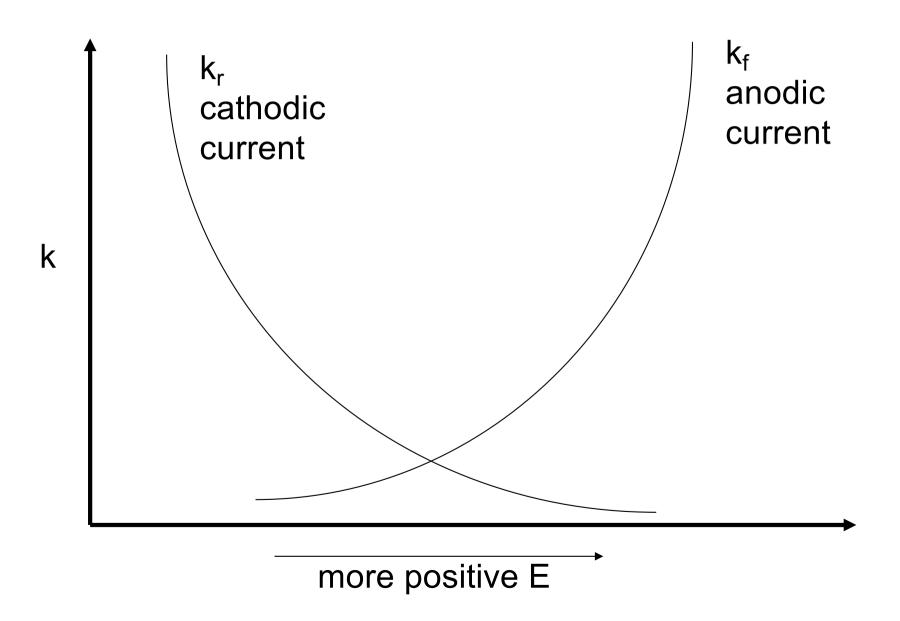
Forward reaction: rate k_f increases as electrode becomes more **positive** (easier to oxidize R to O)

Reverse reaction: rate k_r increases as electrode becomes more **negative** (easier to reduce O to R)

Derivation of Butler-Volmer equation



$$i = \frac{(\# \text{ moles})(z)(F)}{t} \longrightarrow \frac{(\# \text{ moles})}{t \cdot A} = \frac{i}{(z)(F)(A)}$$



Derivation of Butler-Volmer equation

$$R \xrightarrow{k_f} O + ze-$$

concentration

anode:
$$rate_f$$
: = $k_f[R]_s = \frac{i_a}{zFA} = \frac{j_a}{zF}$

cathode

cathode:
$$rate_r := k_r [O]_s = \frac{|i_c|}{zFA} = \frac{|j_c|}{zF}$$

Derivation of Butler-Volmer equation

$$R \xrightarrow{k_f} O + ze-$$

anode:
$$rate_f$$
: = $k_f[R]_s = \frac{i_a}{zFA} = \frac{j_a}{zF}$

cathode:
$$rate_r := k_r [O]_s = \frac{|j_c|}{zFA} = \frac{|j_c|}{zF}$$
 depends on potential!
$$rate_{net} = rate_f - rate_r = \frac{j}{zF} = \frac{j_a - |j_c|}{zF} = \frac{|k_f|[R]_s - k_r|[O]_s}{|k_f|[R]_s - k_r|[O]_s}$$

Derivation of Butler-Volmer equation

rate_{net} = rate_f - rate_r =
$$\frac{j}{zF}$$
 = $\frac{j_a - |j_c|}{zF}$ = $k_f [R]_s - k_r [O]_s$

At equilibrium:

$$rate_f = rate_r$$
; $j_a = |j_c|$

$$k_f[R]_s = k_r[O]_s \longrightarrow \frac{k_f}{k_r} = \frac{[O]_s}{[R]_s} \longrightarrow \ln k_f - \ln k_r = \ln \frac{[O]_s}{[R]_s}$$

Nernst Equation:

$$\mathsf{E}_{\mathsf{cell}} = \mathsf{E}^{\circ}_{\mathsf{cell},\mathsf{T}} - \frac{\mathsf{RT}}{\mathsf{zF}} \mathsf{In} \frac{[\mathsf{R}]_{\mathsf{s}}}{[\mathsf{O}]_{\mathsf{s}}} = \mathsf{E}^{\circ}_{\mathsf{cell},\mathsf{T}} + \frac{\mathsf{RT}}{\mathsf{zF}} \mathsf{In} \frac{[\mathsf{O}]_{\mathsf{s}}}{[\mathsf{R}]_{\mathsf{s}}}$$

$$\ln \frac{[O]_s}{[R]_s} = \frac{(E_{cell} - E^{\circ}_{cell,T})zF}{RT}$$

Substituting the expression from the Nernst Equation into the equilibrium expression

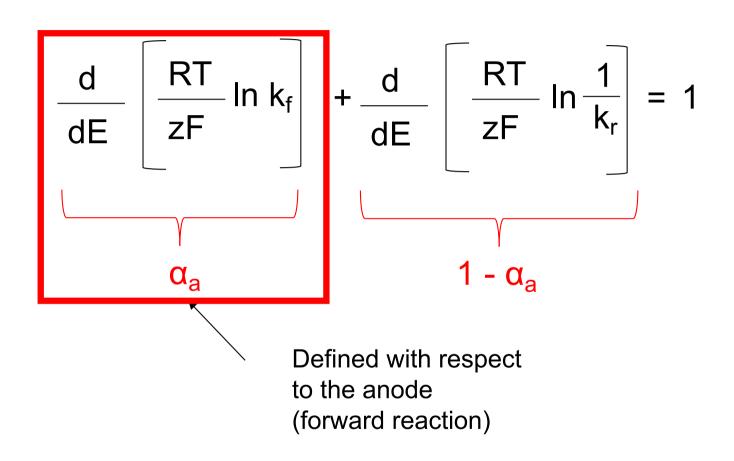
$$\ln k_f - \ln k_r = \ln \frac{[O]_s}{[R]_s}$$

$$\ln \frac{[O]_s}{[R]_s} = \frac{(E_{cell} - E^\circ_{cell,T})zF}{RT}$$

$$\frac{RT}{zF} \times (\ln k_f - \ln k_r) = \frac{(E_{cell} - E^{\circ}_{cell,T})zF}{RT} \times \frac{RT}{zF}$$

$$\frac{d}{dE} \left[\frac{RT}{zF} \ln k_f - \frac{RT}{zF} \ln k_r \right] = \left[(E_{cell} - E^{\circ}_{cell,T}) \right] \frac{d}{dE}$$

$$\frac{d}{dE} \left[\frac{RT}{zF} \ln k_f - \frac{d}{dE} \right] \left[\frac{RT}{zF} \ln \frac{1}{k_r} \right] = 1$$



$$\alpha_a = \frac{d}{dE} \left[\frac{RT}{zF} \ln k_f \right] \longrightarrow \alpha_a E = \left[\frac{RT}{zF} \ln k_f \right] + C$$

or
$$\ln k_f = \frac{\alpha_a z FE}{RT} + C'$$

$$k_f = k_f^{\circ} e^{\frac{\alpha_a z F}{RT}} (E-E^{\circ})$$

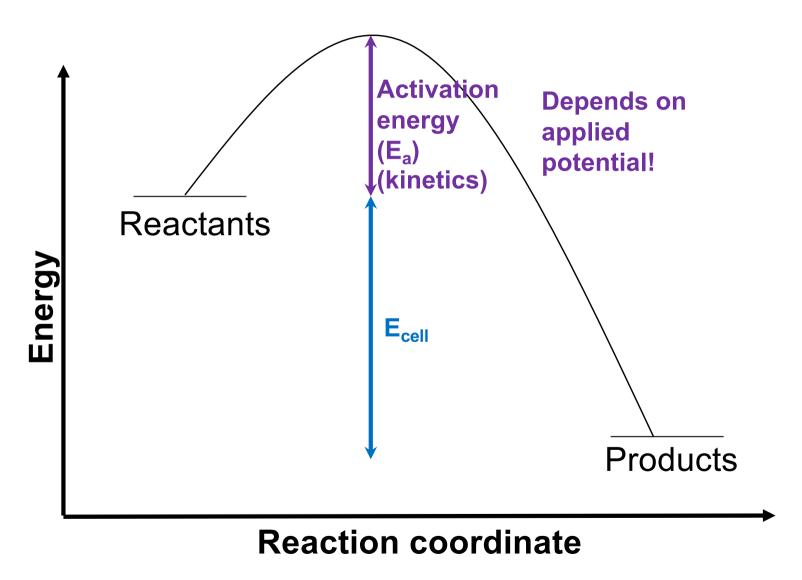
 $k_f = k_f^{\circ} e^{\frac{RT}{RT}} (E-E^{\circ})$

$$k_f = k_f^{\circ}$$
 when $E = E^{\circ}$

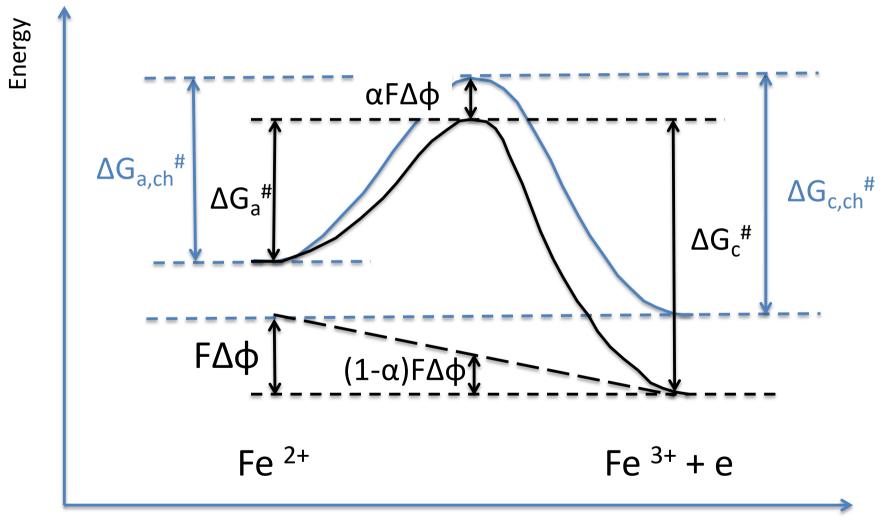
cf. Arrhenius expression:

$$k = Ae^{-\frac{E_a}{RT}}$$

Analogy chemical reactivity and electrochemistry



Activation energy for charge transfer at electrode-electrolyte interface



Explanations:

- Blue is for the oxidation of Fe²⁺ ion in solution without applied electrical potential
- **Black** is for the redox reaction at a solid electrode interface that provides a potential difference $\Delta \phi$ to the solution.
- The applied potential is positive (anodic) since the oxidation of Fe²⁺ to Fe³⁺ is facilitated, the final energy of the product side (Fe³⁺) is lowered (shifted down by $F\Delta\phi$). (The electrode takes up an electron from the dissolved Fe²⁺, hence it is an oxidation (anodic)).
- This distorts the reaction path from the blue to the black curve, changing the activation energy E_A ($\Delta G^{\#}$) in both directions.
- E_A for the oxidation (left to right) is lowered by a factor α . $F\Delta \phi$ (easier to oxidize thanks to the applied potential), while E_A for the reduction (right to left) is increased by a factor $(1-\alpha)F\Delta \phi$ (more difficult to reduce than before).
- The relative ease depends on the transfer number α , which is defined as 0.5 for a 'symmetrical' reaction.

Interpretation of k°

 k° is a **frequency factor**. If the exponential term in an Arrhenius relation expresses the probability of surmounting the activation barrier E_A , k° is seen as the frequency of attempts on it.

$$k = k^{\circ} e^{f(\alpha, E)}$$
 reaction = number of x probability occurance trials of success

Values of k° depend on reaction complexity

$$O_2 + 4 H^+ + 4 e^- \rightarrow H_2O$$
 (smaller k°)

$$H_2 \rightarrow 2 H^+ + 2e^-$$
 (larger k°)

k° for H-oxidation >> k° for O-reduction

Interpretation of k°

Even with a given value of k°, we can still change k

$$k = k^{\circ} e^{f(\alpha, E)}$$

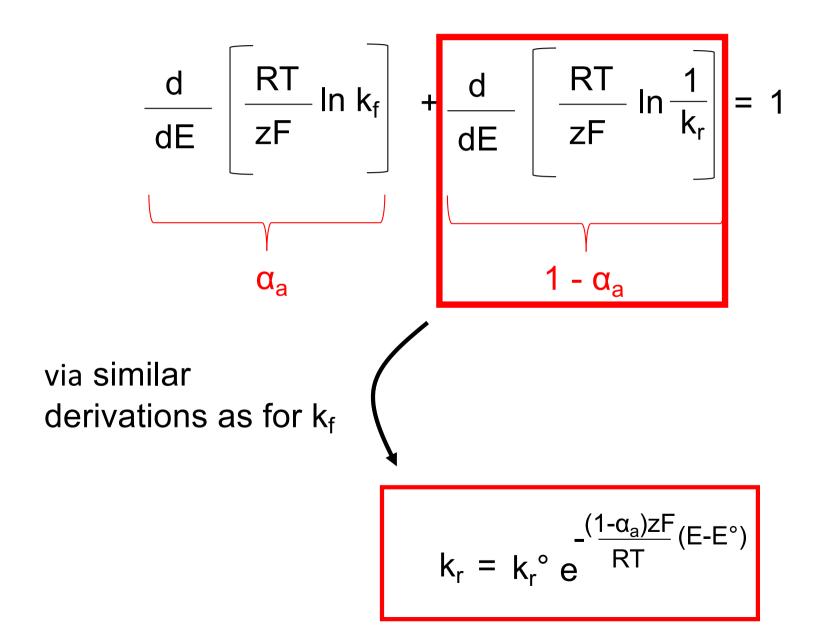
 We can apply a large potential E to maintain a higher k for a small given value for k°

applying a large overpotential leads to lower net cell voltage (= less efficient)

 A better approach is to increase k° by reducing the reaction complexity or by improving the probability of reaction by orienting molecules favorably

approach to improving the oxygen reduction kinetics in existing devices

2nd term of Butler-Volmer equation



Overall Butler-Volmer equation

Combine the expressions for the **forward** and **reverse** rate constants to determine overall current:

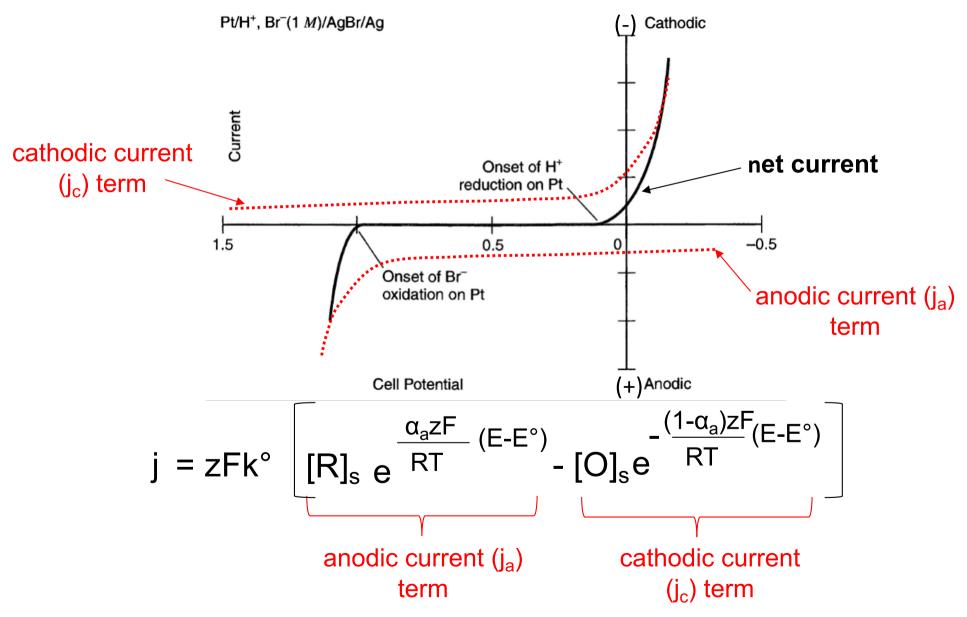
$$\frac{j}{zF} = k_f[R]_s - k_r[O]_s = k_f^\circ e^{\frac{\alpha_a zF}{RT}(E-E^\circ)} [R]_s - k_r^\circ e^{\frac{(1-\alpha_a)zF}{RT}(E-E^\circ)} [O]_s$$

Assuming $k_f^{\circ} = k_r^{\circ} = k^{\circ}$ (1st order kinetics)

Butler-Volmer Equation

$$j = zFk^{\circ} \begin{bmatrix} \frac{\alpha_{a}zF}{RT} (E-E^{\circ}) & -\frac{(1-\alpha_{a})zF}{RT}(E-E^{\circ}) \\ -[O]_{s}e^{-\frac{(1-\alpha_{a})zF}{RT}} \end{bmatrix}$$

Empirical example



Simplification of B-V equation: 1. Equilibrium

$$j = zFk^{\circ}$$
 $[R]_{s}$ $e^{\frac{\alpha_{a}zF}{RT}}$ $(E-E^{\circ})$ $-[O]_{s}e^{-\frac{(1-\alpha_{a})zF}{RT}}$ $(E-E^{\circ})$

At equilibrium, j = 0 ($j_a = |j_c|$)

$$[R]_{s} e^{\frac{\alpha_{a}zF}{RT}} (E_{eq}-E^{\circ}) = [O]_{s}e^{\frac{(1-\alpha_{a})zF}{RT}} (E_{eq}-E^{\circ})$$

$$\frac{[O]_s}{[R]_s} = e^{\frac{zF}{RT}} (E_{eq}-E^\circ)$$

simplifies to Nernst Equation

$$\ln \frac{[O]_s}{[R]_s} = \frac{zF}{RT} (E_{eq}-E^\circ) \quad \blacksquare$$

$$\ln \frac{[O]_s}{[R]_s} = \frac{zF}{RT} (E_{eq}-E^\circ) \qquad \Longrightarrow \qquad E_{eq} = E^\circ + \frac{RT}{zF} \ln \frac{[O]_s}{[R]_s}$$

Simplification of B-V equation: 2.Uniform concentration and j°

$$j = zFk^{\circ}$$
 $\left[[R]_{s} e^{\frac{\alpha_{a}zF}{RT}} (E-E^{\circ}) - [O]_{s}e^{-\frac{(1-\alpha_{a})zF}{RT}} (E-E^{\circ}) \right]$

Assuming
$$[O]_s = [O]_{bulk} = [R]_s = [R]_{bulk} = [C]$$

no mass transfer limitations

Define:

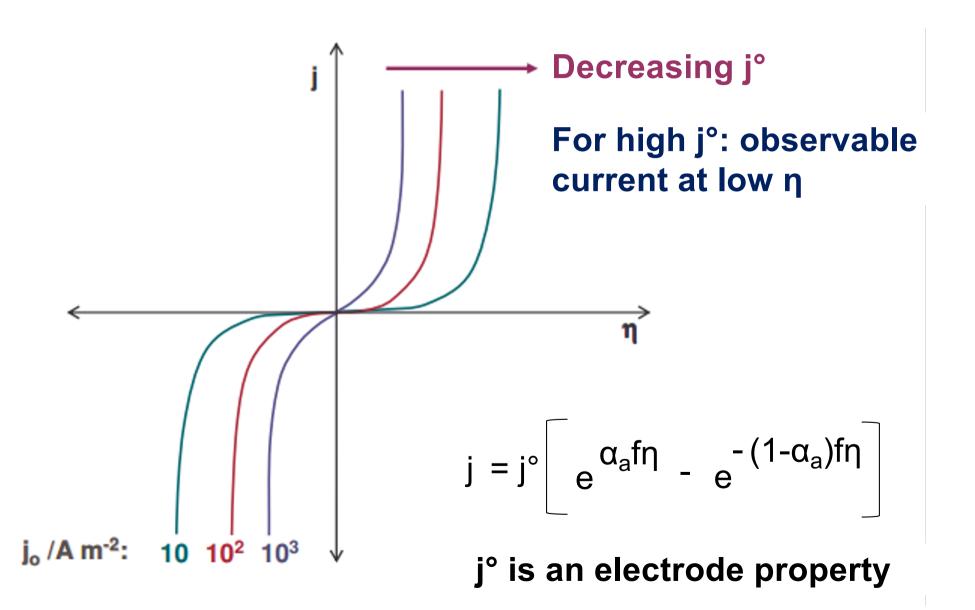
η = E-E° (overpotential)

$$f = \frac{zF}{RT}$$

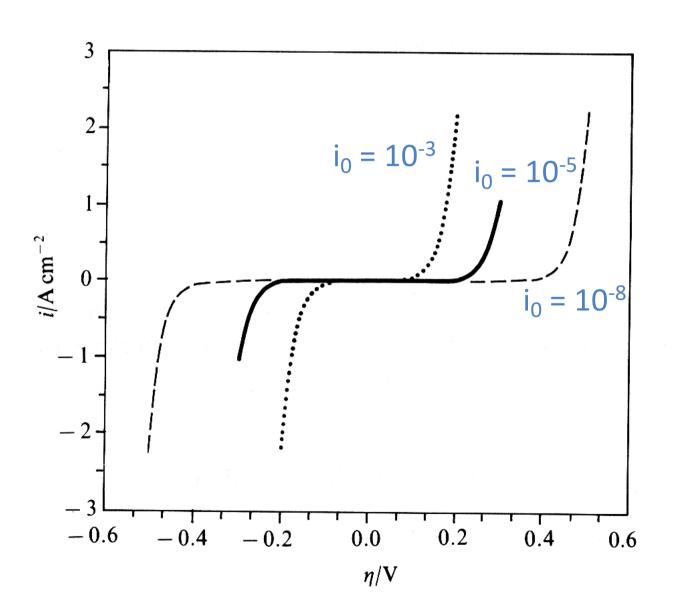
$$j = j^{\circ} \left[e^{\alpha_a f \eta} - e^{-(1-\alpha_a)f \eta} \right]$$

 $j^{\circ} = zFk^{\circ}[R]^{1-\alpha}[O]^{\alpha}$ for 1:1 stoichiometric O : R reactions = $zFk^{\circ}[C]$ when [O]=[R]=[C]

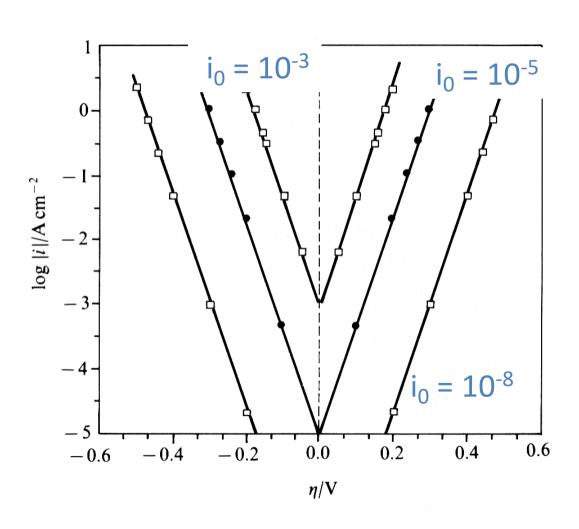
Effect of j° on j-V plot



Effect of exchange current i₀ on polarisation behaviour (linear scale)



Effect of exchange current i₀ on polarisation behaviour (log scale)



Physicochemical interpretation of j°

The **exchange current density** (j°) is defined as the anodic or cathodic current density which flows through the interface at equilibrium (zero net current)

$$R \xrightarrow{(j^\circ)} O + ze-$$

j° is a property of the electrode material. It represents its catalytic activity for the reaction of interest.

Physicochemical interpretation of j°

Influence of electrode material on j° for the redox couple H+/H₂:

Metal	Log10 j° (A/cm²)
Pb, Hg	-13
Zn	-11
Sn, Al, Be	-10
Ni, Ag, Cu, Cd	-7
Fe, Au, Mo	-6
W, Co, Ta	-5
Pd, Rh	-4
Pt	-2

Pt is 11 orders of magnitude more catalytic than Hg for the redox couple H⁺/H₂.

Parameters affecting charge transfer current densities

```
Exchange current density i<sub>0</sub> of the reaction
```

$$2H^+ + 2e^- \Rightarrow H_2 (20^{\circ}C)$$

Metal Solution i₀ [A/cm²]

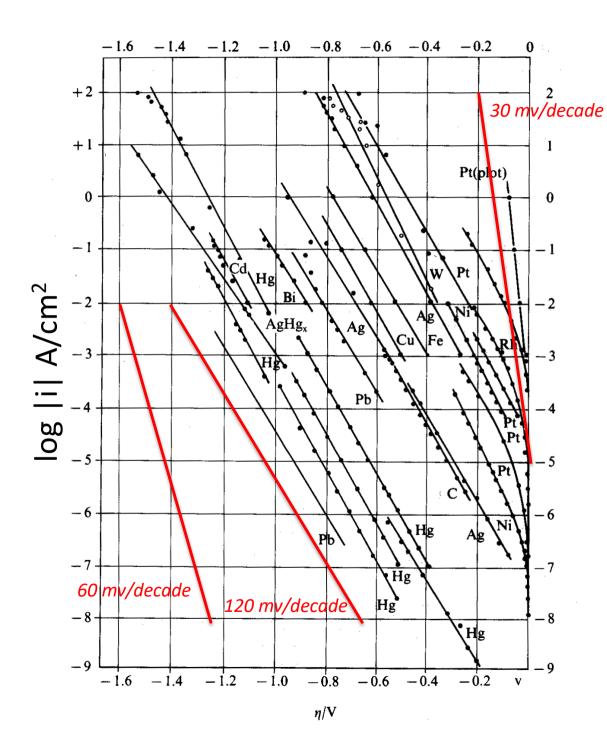
Pt 1 M HCl 1 10⁻³

Pb 1 M HCl 2 10⁻¹³

Cu 0.14 M HCl 2 10⁻⁷

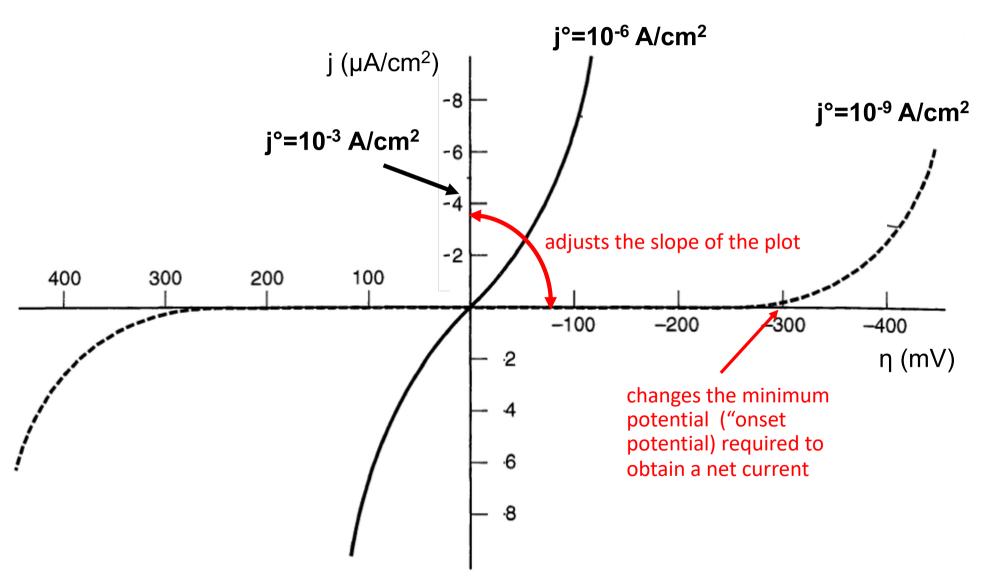
Cu 0.15 M NaOH 1 10⁻⁶

Tafel coefficients: β_a and $\beta_c \approx 30 - 60 \text{ mV}$



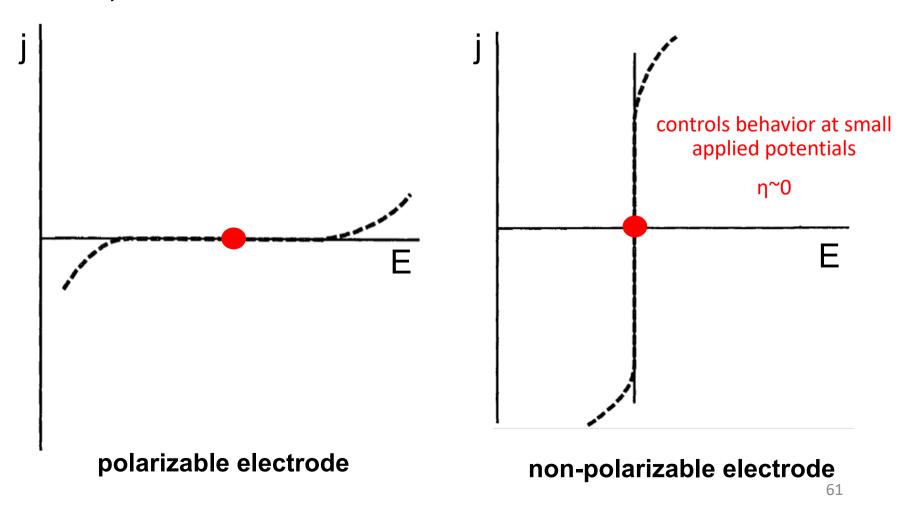
Cathodic
polarization curves
of hydrogen
evolution on
different metals in
sulfuric acid

Effect of j° on 'polarizability'



Effect of j° on polarizability

An **ideal polarizable electrode** is an electrode at which no charge transfer occurs across the metal-solution interface, regardless of the potential imposed.



Simplification of B-V equation: 3. small overpotential η

For small E-E°
$$\rightarrow$$
 $|\eta| << \frac{RT}{zF}$

Substituting **Taylor series approximation** into corresponding exponential terms

$$j = j^{\circ} \left[e^{\alpha_{a} f \eta} - \left[e^{-(1-\alpha_{a})f \eta} \right] \right]$$

$$\frac{j}{j^{\circ}} = (1+\alpha_{a} f \eta) - (1-(1-\alpha_{a})f \eta) = f \eta$$

Solving for η and substituting for f

$$n = j$$

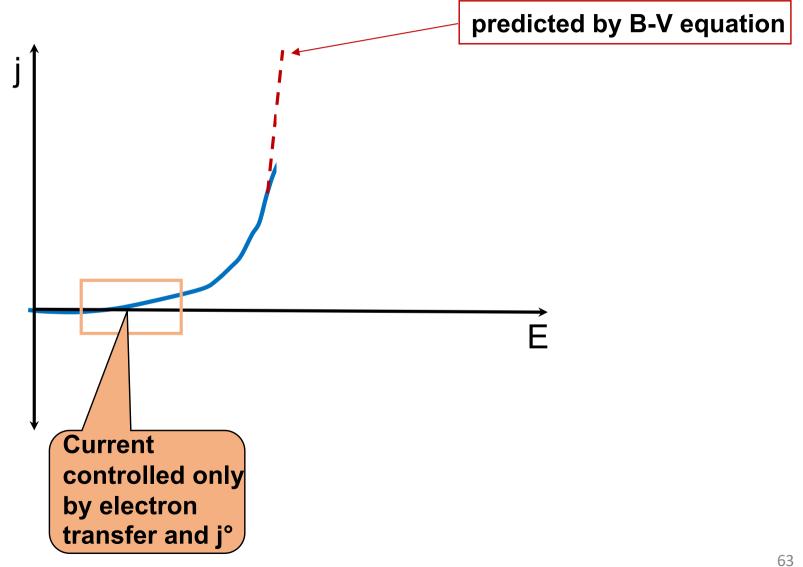
$$zFj^{\circ}$$

$$V = iR$$

Ohm's law:

charge transfer resistance

$$R_{ct} = \frac{RT}{zF|i^{\circ}|}, \ \rho_{ct} = \frac{RT}{zF|j^{\circ}|}$$



Effect of j° and R_{ct} on polarizability

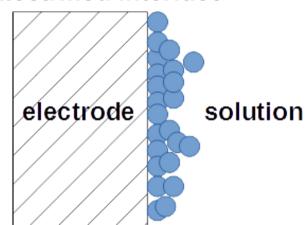
An **ideal polarizable electrode** is an electrode at which no charge transfer occurs across the metal-solution interface, regardless of the potential imposed.

$$R_{ct} = \frac{RT}{zF|i^{\circ}|}$$

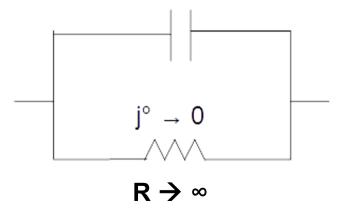
- As R_{ct} approaches zero, the interface is said to be ideally non-polarizable, i.e. its potential cannot be changed
- A reference electrode should be ideally polarizable over the current range in the experiment

Effect of j° and R_{ct} on polarizability

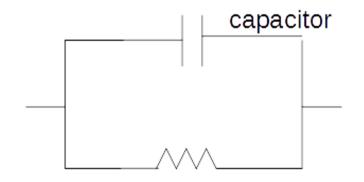
Electrified interface



Equivalent circuit of ideally polarizable interface

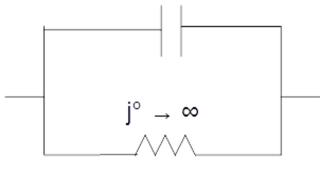


Its equivalent circuit

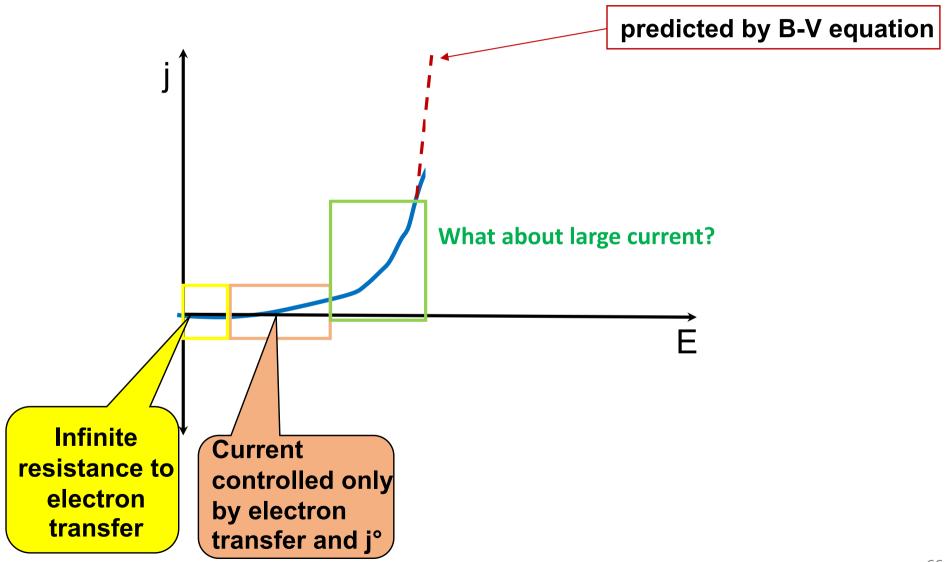


resistor

Equivalent circuit of ideally non-polarizable interface



 $R \rightarrow 0$



Simplification of B-V equation: 4. large overpotential η

For large E-E°
$$\rightarrow |\eta| >> \frac{RT}{zF}$$

Depending on whether a positive or negative potential is applied, we have either

$$e^{\alpha_a f \eta} >> e^{-(1-\alpha_a)f \eta} \qquad \text{or} \qquad e^{\alpha_a f \eta} << e^{-(1-\alpha_a)f \eta}$$

$$\text{if } \eta >> 0 \qquad \qquad \text{if } \eta << 0$$

For large E-E°
$$\rightarrow |\eta| >> \frac{RT}{zF}$$

for
$$\eta > 0$$
 (anodic) $e^{\alpha_a f \eta} >> e^{-(1-\alpha_a)f \eta}$

$$j = j^{\circ} \left[e^{\alpha_a f \eta} - e^{-(1-\alpha_a)f \eta} \right]$$

$$j \sim j^{\circ}e^{\alpha_{a}f\eta}$$

$$j \sim j^{\circ}e^{\alpha_{a}f\eta}$$

$$j \sim j^{\circ}e^{\alpha_{a}f\eta}$$

$$\eta = a + b \ln j$$

Into linear form:

$$\frac{1}{\alpha_a f} (\ln j - \ln j^\circ) = \eta$$

$$\frac{1}{\alpha_{a}f}(\ln j - \ln j^{\circ}) = \eta \qquad \qquad \eta = -\frac{RT}{zF\alpha_{a}} \ln j^{\circ} + \frac{RT}{zF\alpha_{a}} \ln j$$

For large E-E°
$$\rightarrow |\eta| >> \frac{RT}{zF}$$

Depending on whether a positive or negative potential is applied, we have either

$$e^{\alpha_a f \eta}$$
 - $(1-\alpha_a) f \eta$ or $if \eta >> 0$

$$e^{\alpha_a f \eta} << e^{-(1-\alpha_a)f \eta}$$
if $\eta << 0$

For large E-E°
$$\rightarrow$$
 $|\eta| >> \frac{RT}{zF}$

for
$$\eta < 0$$
 (cathodic)

$$e^{\alpha_{a}f\eta} << e^{-(1-\alpha_{a})f\eta}$$

$$j = j^{\circ} \left[e^{\alpha_{a}f\eta} - e^{-(1-\alpha_{a})f\eta} \right]$$

$$j \sim -j^{\circ}e^{-(1-\alpha_{a})f\eta}$$

$$\frac{-j}{j^{\circ}} = e^{-(1-\alpha_{a})f\eta}$$

$$\ln\left|\frac{j}{j^{\circ}}\right| = -(1-\alpha_{a})f\eta$$

$$\eta = a + b \ln j$$

Into linear form:

$$\frac{-1}{(1-\alpha_s)f} (\ln |j| - \ln |j^s|) = \eta$$

$$\frac{-1}{(1-\alpha_a)f} \left(\ln |j| - \ln |j^\circ| \right) = \eta \quad \Longrightarrow \quad \eta = \frac{RT}{zF(1-\alpha_a)} \ln |j| + \frac{RT}{zF(1-\alpha_a)} \ln |j^\circ|$$

Simplification of B-V equation: 4. large overpotential η

for
$$\eta >> 0$$
 (anodic)

$$\eta = -\frac{RT}{zF\alpha_a} \ln j^\circ + \frac{RT}{zF\alpha_a} \ln j$$

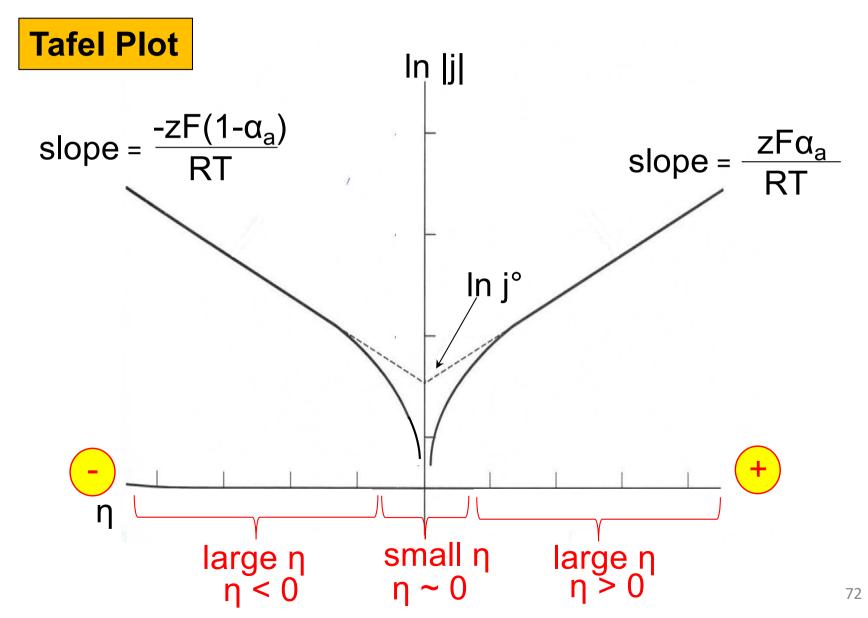
In j = In j° +
$$\frac{zF\alpha_a}{RT}$$
 η

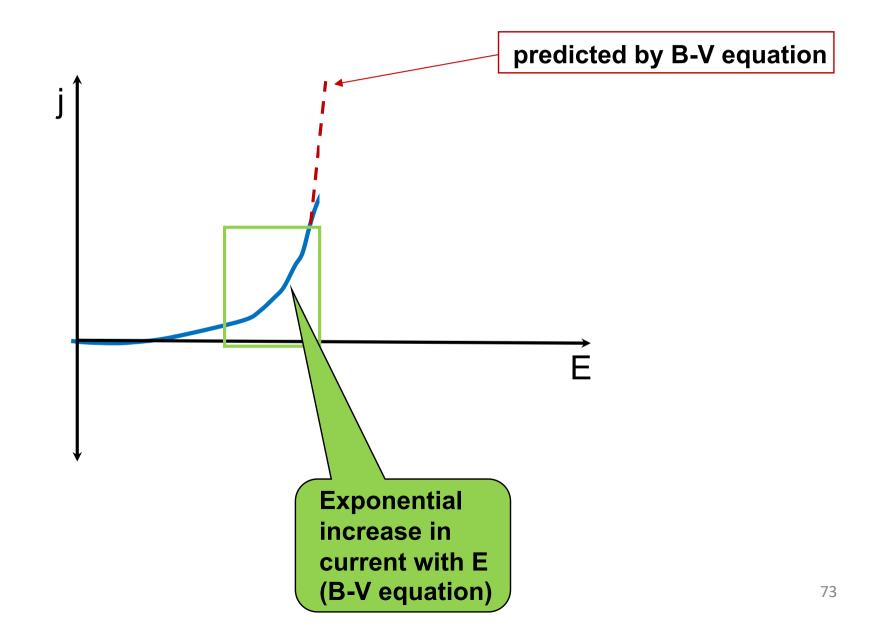
for
$$\eta << 0$$
 (cathodic)

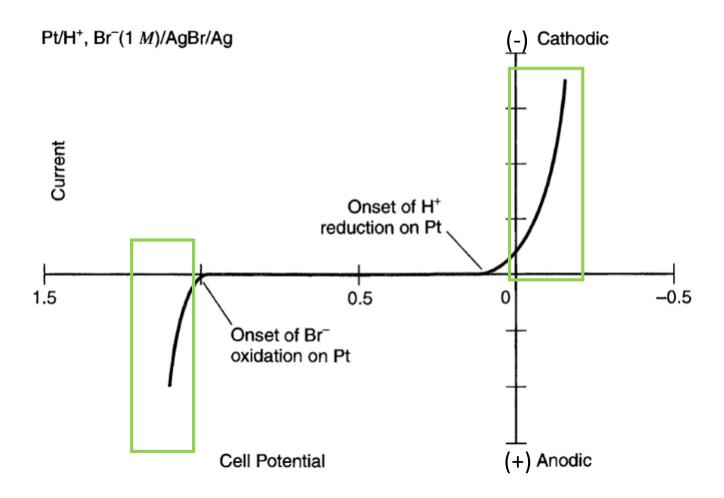
$$\eta = \frac{RT}{zF(1-\alpha_a)} \ln |j| + \frac{RT}{zF(1-\alpha_a)} \ln |j^\circ|$$

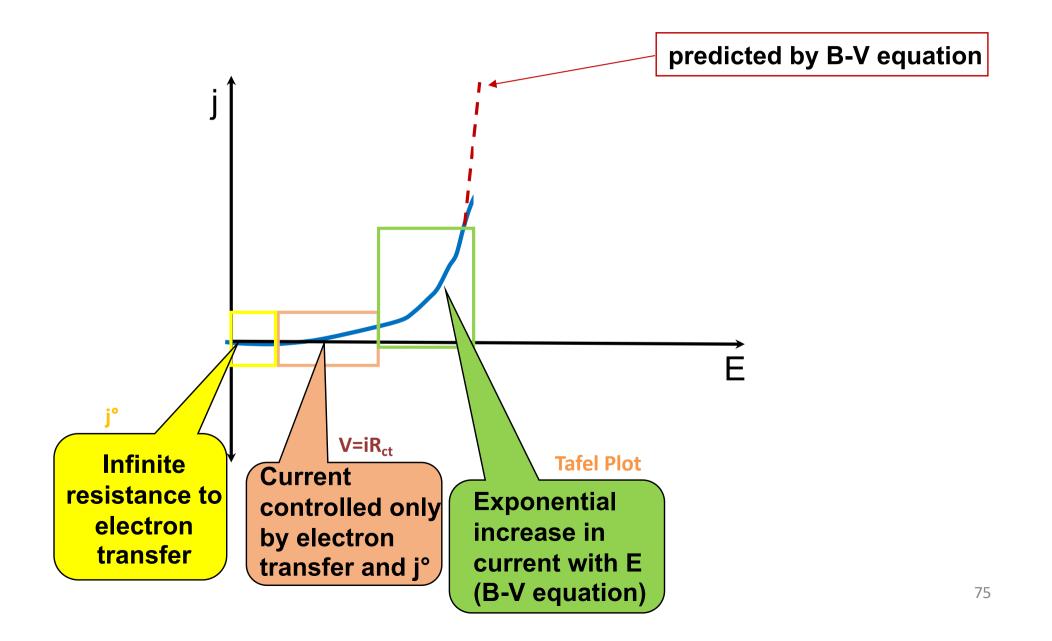
$$|\ln |j| = |\ln |j^{\circ}| - \frac{zF(1-\alpha_a)}{RT}$$

Simplification of B-V equation: 4. large overpotential η









Overview of B-V simplifications

$$j = zFk^{\circ}$$
 [R]_s e RT - [O]_s e RT - [O]_s e

Small |η| → charge transfer resistance

$$(E-E^{\circ}) \sim 0$$
 (10 mV) $R_{ct} = \frac{RT}{zF[i^{\circ}]}$

Large |η| → Tafel kinetics

$$(E-E^{\circ}) >> 0 \quad (> 0.1 \text{ V}) \qquad [R]_{s} \text{ e} \qquad \frac{\alpha_{a}zF}{RT} \quad (E-E^{\circ}) \qquad \text{anodic current dominates}$$

$$(E-E^{\circ}) << 0 \quad (< -0.1 \text{ V}) \qquad [O]_{s} \quad \text{e} \quad \frac{-(1-\alpha_{a})ZF}{RT} \quad (E-E^{\circ}) \qquad \text{cathodic current dominates}$$

• $i_{net} = 0 \rightarrow Nernst Equation$

$$j_a = |j_c| = j^\circ$$

electrode
property

Nernst Equation
$$j_{a} = |j_{c}| = j^{\circ}$$

$$j^{\circ} = zFk \circ [R]_{S}^{1-\alpha}[O]_{S}^{\alpha} = zFk \circ [C]$$

$$electrode$$

$$property$$

$$1:1$$

$$0: R \text{ ratio}$$

$$j^{\circ} = zFk \circ [R]_{S}^{1-\alpha}[O]_{S}^{\alpha} = zFk \circ [C]$$

$$reaction$$

$$complexity$$

dominates

B-V equation relative to equilibrium reference potential

$$j = zFk^{\circ} \left[R]_{s} e^{\frac{\alpha_{a}zF}{RT}} (E-E^{\circ}) - [O]_{s} e^{-\frac{(1-\alpha_{a})zF}{RT}} (E-E^{\circ}) \right]$$

arbitrary reference selected

Re-write this equation using the equilibrium potential as a reference.

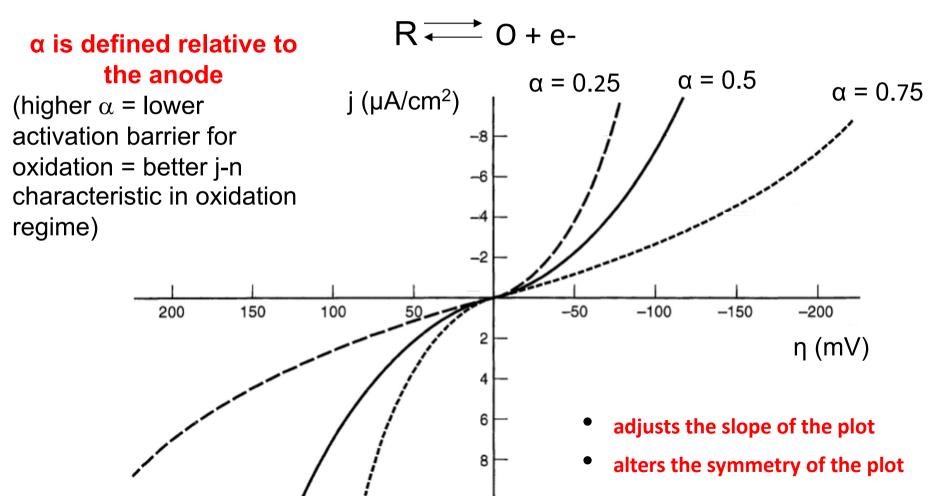
(i.e., we evaluate current when a potential is applied relative to the equilibrium reference)

$$\frac{j}{j^{\circ}} = \frac{[R]_{s}}{[R^{*}]} e^{\frac{\alpha_{a}zF}{RT}} (E-E_{eq}) - \frac{[O]_{s}}{[O^{*}]} e^{\frac{-(1-\alpha_{a})zF}{RT}} (E-E_{eq})$$

$$\mathring{\eta}$$

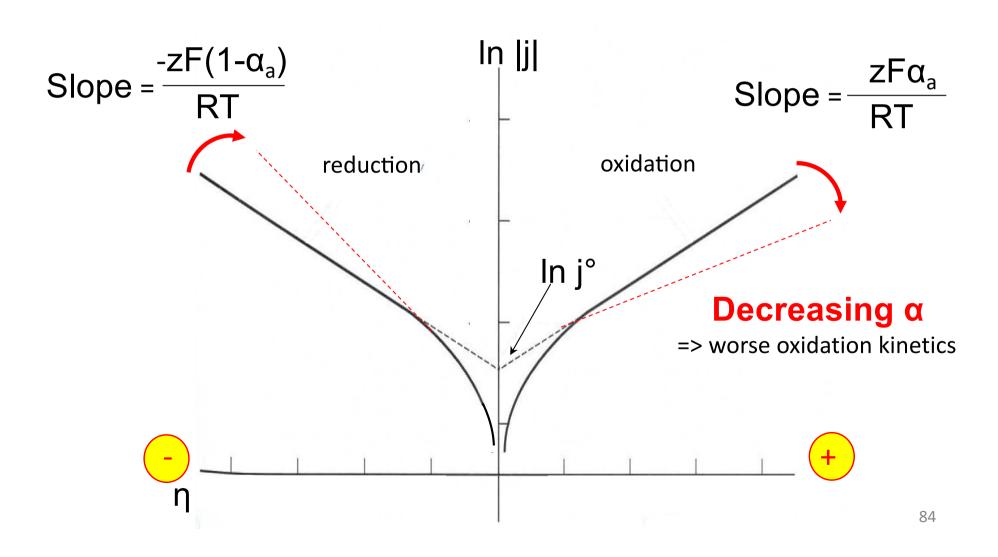
Effect of α

If the voltammogram (current-potential curve) is charge transfer kinetically controlled (no mass transfer effects), α far from 0.5 will result in an asymmetric wave shape

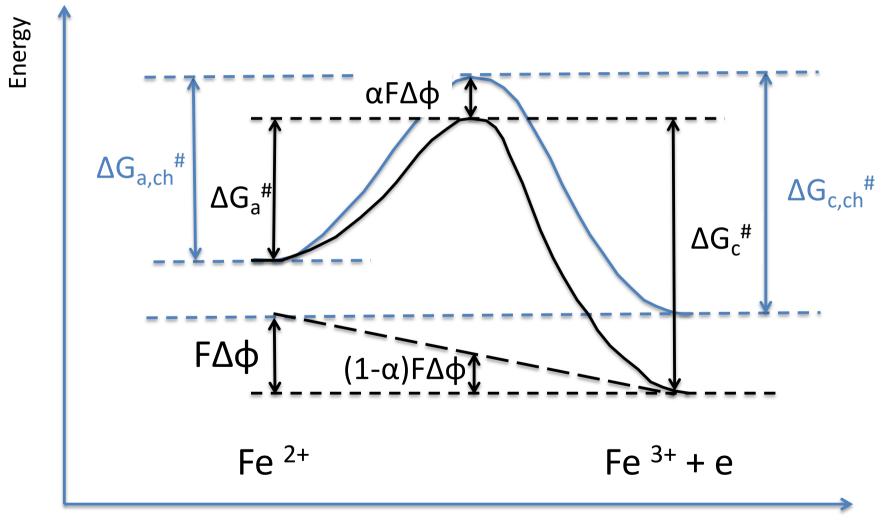


Effect of α

Tafel Plot

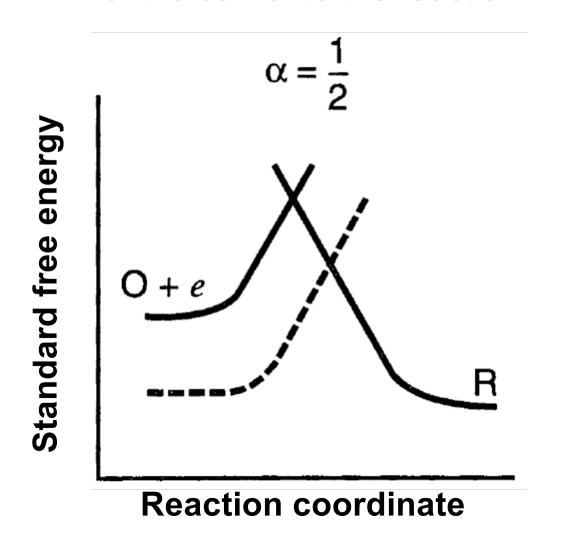


pm: Activation energy for charge transfer at electrode-electrolyte interface



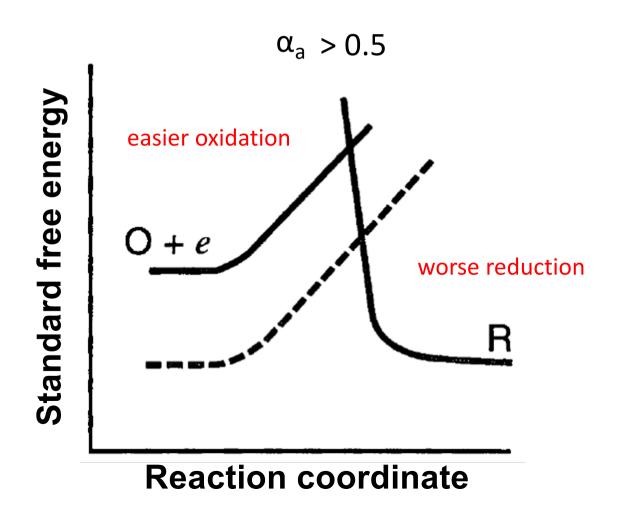
Physicochemical interpretation of α

The **transfer coefficient** (α) is an indicator of the symmetry of the barrier to the reaction.



Physicochemical interpretation of α

The **transfer coefficient** (α) is an indicator of the symmetry of the barrier to the reaction.



Physicochemical interpretation of α

The **transfer coefficient** (α) is an indicator of the symmetry of the barrier to the reaction.

